$h'(x)=\left(\frac{f(x)}{g(x)}\right)'$
$\phantom{h'(x)}\,=\left(f(x)\left(g(x)\right)^{-1}\right)'$
$\phantom{h'(x)}\,=f'(x)\left(g(x)\right)^{-1}+f(x)\left(\left(g(x)\right)^{-1}\right)'$
$\phantom{h'(x)}\,=f'(x)\left(g(x)\right)^{-1}+f(x)\cdot \left(-\frac{g'(x)}{g^2(x)}\right)$
$\phantom{h'(x)}\,=\frac{f'(x)}{g(x)}-f(x)\cdot \frac{g'(x)}{g^2(x)}$
$\phantom{h'(x)}\,=\frac{f'(x)}{g(x)}-\frac{f(x) g'(x)}{g(x)^2}$
$\phantom{h'(x)}\,=\frac{f'(x)g(x)}{g(x)^2}-\frac{f(x) g'(x)}{g(x)^2}$
$\phantom{h'(x)}\,=\frac{f'(x)g(x)-f(x) g'(x)}{g(x)^2}$